Graph Source:

Precalculus Graphical, Numerical, Algebraic (9th Edition)
By: Demana, Waits, Foley, Kennedy, Bock
Section 1.3 Twelve Basic Functions
http://www.phschool.com/atschool/ap misc/dwfk precalc/pdfs/8e/Ch1 Section3.pdf

Identity Function

$f(x)=x$

Interesting Fact: This is the only function that acts on every real number by leaving it alone.

Squaring Function

$f(x)=x^{2}$

Interesting Fact: The graph of this function, called a parabola, has a reflection property that is useful in making flashlights and satellite dishes.

Cubing Function

$f(x)=x^{3}$

Interesting Fact: The origin is called a "point of inflection" for this curve because the graph changes curvature at that point.

Square Root Function

$$
f(x)=\sqrt{x}
$$

Interesting Fact: Put any positive number into your calculator. Take the square root. Then take the square root again. Then take the square root again, and so on. Eventually you will always get 1 .

Natural Logarithm Function

$f(x)=\ln x$

Interesting Fact: This function increases very slowly. If the x-axis and y-axis were both scaled with unit lengths of 1 inch, you would have to travel more than 2.5 miles along the curve just to get 1 foot above the x-axis.

Reciprocal Function

$f(x)=\frac{1}{x}$

Interesting Fact: This curve, called a hyperbola, also has a reflection property that is useful in satellite dishes.

Exponential Function

$f(x)=e^{x}$
Interesting Fact: The number e is an irrational number (like π) that shows up in a variety of applications. The symbols e and π were both brought into popular use by the great Swiss mathematician Leonhard Euler (1707-1783).

Sine Function

$f(x)=\sin x$

Interesting Fact: This function and the sinus cavities in your head derive their name from a common root: the Latin word for "bay." This is due to a 12th century mistake by Robert of Chester, who translated a word incorrectly from an Arabic
manuscript.

Cosine Function

$f(x)=\boldsymbol{c o s} \boldsymbol{x}$

Interesting Fact: The local extrema of the cosine function occur exactly at the zeros of the sine function, and vice versa.

Greatest Integer Function

$f(x)=$ int x

Interesting Fact: This function has a jump discontinuity at every integer value of x. Similar-looking functions are called step functions.

Absolute Value Function

Interesting Fact: This function has an abrupt change of direction (a "corner") at the origin, while our other functions are all "smooth" on their domains.

Logistic Function

Interesting Fact: There are two horizontal asymptotes, the x-axis and the line $y=1$. This function provides a model for many applications in biology and business.

