Conic Section: Ellipse

Conic Section: Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center is (,).

If \qquad the major axis is parallel to the x-axis, the length of the major axis is $2 a$, and the length of the minor axis is 2 b .

If \qquad the major axis is parallel to the y-axis, the length of the major axis is $2 b$, and the length of the minor axis is $2 a$.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Center is () .

If \qquad the major axis is parallel to the x-axis, the length of the major axis is $2 a$, and the length of the minor axis is 2 b .

If \qquad the major axis is parallel to the y-axis, the length of the major axis is $2 b$, and the length of the minor axis is $2 a$.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center is ().

If \qquad the major axis is parallel to the x-axis, the length of the major axis is $2 a$, and the length of the minor axis is $2 b$.

If \qquad , the major axis is parallel to the y-axis, the length of the major axis is $2 b$, and the length of the minor axis is $2 a$.
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Center is ().
If \qquad , the major axis is parallel to the x-axis, the length of the major axis is $2 a$, and the length of the minor axis is 2 b .

If \qquad the major axis is parallel to the y-axis, the length of the major axis is $2 b$, and the length of the minor axis is 2 a .

