Story Problem

Hanna has \$11.20 in a jar that contains only nickels and dimes. There are 140 coins in the jar. How many of each coin does Hanna have?

Let Statements	System
Let $\mathrm{n}=$ number of nickels	$\mathrm{n}+\mathrm{d}=140$
Let $\mathrm{d}=$ number of dimes	$0.05 \mathrm{n}+0.10 \mathrm{~d}=11.20$
Solve for a single variable.	Substitute and Solve.

Plug back in to find the other variable.

A total of 243 adults and children are at a movie theater.
There are 109 more adults than children in the theater.
How many adults are there? How many children are there?

Let Statements	System
Let $\mathrm{a}=$ number of adults	
Let c = number of children	$\mathrm{a}+\mathrm{c}=243$
Solve for a single variable.	Substitute and Solve.
Plug back in to find the other variable.	Write the solution.

Story Problem

Tamika would like to go fishing at one of two catfish farms close to her home. Floyd's Catfish Farm charges a $\$ 5$ fee to fish plus $\$ 2$ per pound of fish caught. The Miller's Catfish Farm does not charge a fee to fish, but charges $\$ 3$ per pound of fish caught. When is the charge the same?

Let Statements	System
Let $p=$ pounds of fish Let $t=$ total cost	$t=5+2 p$
Solve for a single variable.	Substitute and Solve.
Plug back in to find the	
other variable.	Write the solution.
2	

Story Problem
Ben is 12 years older than Emily The sum of their ages is 64. How old is Ben? How old is Emily?

Let Statements	System
Let $\mathrm{b}=$ Ben's age	
Let e = Emily's age	
Solve for a single variable.	Substitute and Solve.
Plug back in to find the	
other variable.	Write the solution.

