Finding Sine, Cosine, and Tangent of a Point

1. Graph the point on the coordinate plane.
2. Draw a line connecting the point to the origin.
3. Draw an additional line perpendicular to the x axis to complete the reference triangle.
4. Label the reference angle as θ.
5. Label the lengths of the triangle's legs.
6. Use the Pythagorean Theorem to find the length of the hypotenuse.
7. Find $\sin (\theta), \cos (\theta)$, and $\tan (\theta)$.

Finding Sine, Cosine, and Tangent of a Point

1. Graph the point on the coordinate plane.
2. Draw a line connecting the point to the origin.
3. Draw an additional line perpendicular to the x axis to complete the reference triangle.
4. Label the reference angle as θ.
5. Label the lengths of the triangle's legs.
6. Use the Pythagorean Theorem to find the length of the hypotenuse.
7. Find $\sin (\theta), \cos (\theta)$, and $\tan (\theta)$.

Finding Sine, Cosine, and Tangent of a Point

1. Graph the point on the coordinate plane.
2. Draw a line connecting the point to the origin.
3. Draw an additional line perpendicular to the x axis to complete the reference triangle.
4. Label the reference angle as θ.
5. Label the lengths of the triangle's legs.
6. Use the Pythagorean Theorem to find the length of the hypotenuse.
7. Find $\sin (\theta), \cos (\theta)$, and $\tan (\theta)$.

Finding Sine, Cosine, and Tangent of a Point

1. Graph the point on the coordinate plane.
2. Draw a line connecting the point to the origin.
3. Draw an additional line perpendicular to the x axis to complete the reference triangle.
4. Label the reference angle as θ.
5. Label the lengths of the triangle's legs.
6. Use the Pythagorean Theorem to find the length of the hypotenuse.
7. Find $\sin (\theta), \cos (\theta)$, and $\tan (\theta)$.
