Finding Sine, Cosine, and Tangent of a Point

- 1. Graph the point on the coordinate plane.
- 2. Draw a line connecting the point to the origin.
- 3. Draw an additional line perpendicular to the x-axis to complete the reference triangle.
- 4. Label the reference angle as θ .
- 5. Label the lengths of the triangle's legs.
- 6. Use the Pythagorean Theorem to find the length of the hypotenuse.
- 7. Find $sin(\theta)$, $cos(\theta)$, and $tan(\theta)$.

Finding Sine, Cosine, and Tangent of a Point

- 1. Graph the point on the coordinate plane.
- 2. Draw a line connecting the point to the origin.
- 3. Draw an additional line perpendicular to the x-axis to complete the reference triangle.
- 4. Label the reference angle as θ .
- 5. Label the lengths of the triangle's legs.
- 6. Use the Pythagorean Theorem to find the length of the hypotenuse.
- 7. Find $sin(\theta)$, $cos(\theta)$, and $tan(\theta)$.

Finding Sine, Cosine, and Tangent of a Point

- 1. Graph the point on the coordinate plane.
- 2. Draw a line connecting the point to the origin.
- 3. Draw an additional line perpendicular to the x-axis to complete the reference triangle.
- 4. Label the reference angle as θ .
- 5. Label the lengths of the triangle's legs.
- 6. Use the Pythagorean Theorem to find the length of the hypotenuse.
- 7. Find $sin(\theta)$, $cos(\theta)$, and $tan(\theta)$.

Finding Sine, Cosine, and Tangent of a Point

- 1. Graph the point on the coordinate plane.
- 2. Draw a line connecting the point to the origin.
- 3. Draw an additional line perpendicular to the x-axis to complete the reference triangle.
- 4. Label the reference angle as θ .
- 5. Label the lengths of the triangle's legs.
- 6. Use the Pythagorean Theorem to find the length of the hypotenuse.
- 7. Find $sin(\theta)$, $cos(\theta)$, and $tan(\theta)$.